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Simulations of Solvation Dynamics Using a Nonlinear Response Approach
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Simulations of the time evolution of the probability distribution function of the solvation coordinate of a
solute in liquid solution are presented. Assuming impulsive excitation of the ground-state population to the
excited-state free energy surface, the time dependence of the probability distribution function of the solvation
coordinate is obtained by solving the Smoluchowski diffusion equation. Emphasis is on the influence of
anharmonicity in the expression for the free energy surfaces on the solvation dynamics and its implications
for time-resolved fluorescence measurements.

1. Introduction phenomenon. One of these is vibrational cooling which
equilibrates the vibrationally hot molecule (formed in the
intramolecular vibrational relaxation (IVR) procé$g® fol-
lowing the optical excitation pulse) with the bdtkt16-19
Yibrational cooling is likely to occur on a picosecond time

Solvation dynamics in polar liquids has received great interest
in the past decade [for reviews, see ref 1]. The time-dependent
response of the solvent upon photoinduced changes of the charg

Xamp . . narrowing results from the dynamic solvation process it-
studies have been performed in recent years is the laser dye

12,13,20,21 i i
molecule DCM (4-(dicyanomethylene) 2-methyigiimety: B0 "o e eray surface fo the solite syste i
amino)styryl)-4-pyran)2=8 In polar solvents, DCM is known 9y Y

to exhibit an appreciable total Stokes shift (edges= 465 nm fhre e;«i;;reg ?t?tfh(a?ra fur:]ct:on of :?e Soflvftt'r? " cootrdrlr:@:lezhs
andAs = 630 nm in methan8). The large Stokes shift arises arger than for the iree energy suriace for the system | e

mainly from the large difference~20 D) between the dipole gr_ound staté>"2 A change in Fhe: curvaFure of the fr_ee energy
moments of the molecule in its ground and the emissive excited might occur when the solute in its excited state dielectrically

charge transfer (CT) stafe Recently, we reported on femto- saturates the first solvat'ion .shé?te’l It is the purpose of this
second fluorescence up-conversion studies of the solvationP2Per to explore ‘_s.olvz_atlon-lnduce(_j band narrowing base_d on
dynamics for DCM87 In several polar solvents, DCM showed thls Iattgr mechamsm in more detail by extending our previous
bimodal solvation behavior. A fast decay component @0 S|mulz?1t|0ns7. It will be showr_1 that better ggreement with f[he
fs) was observed and attributed to the effect of inertial “free €XPerimental data for DCM in polar solution can be obtained
streaming” motions of the solvent molecules. The slower decay PY including anharmonic terms in the expressions for the free
components, on a picosecond time scale, were considered tgnergy curves as a function of the solvation coordinate. The
be representative of the contribution of diffusional reorientation results are a typical manifestation of nonlinear response in
motions to the solvation dynamics of the solute. Concomitant Solvation dynamics. Nonlinear effects in ionic and dipolar
with the dynamic Stokes shift, a rapid initial increase (on a solvation have been extensively investigated. Kakitani, Mataga,
Subpicosecond time Sca|e) in the integrated emission intensityand Yoshimo#r?-38 discussed the effects of dielectric saturation
and an overall narrowing of the emission band could be on the activation barrier and the reaction rate of the charge
discerned. It was conjectured that the excited-state electrontransfer in liquid solution. However, in a series of papers
transfer is preferentially to a higher lying, but nonemissive, Tachiya has commented on several aspects of their #ofk.
charge transfer state which subsequently relaxes by internalln more recent work, Yoshimori elaborated on the effects of
conversion to the emissive charge transfer state. Starting fromnonlinear response on the dynamics of the solvation process
a modified Smoluchowski diffusion equatii?land assuming  using a generalized Smoluchowskilasov equatiort344 Also,

free energy curves that show a parabolic dependence on thenonlinear effects have been included in molecular dynamics
solvation coordinate, a model calculation of the population simulations of solvation dynami¢8. In general, it has been
redistribution in the excited CT state following the excitation concluded that nonlinear behavior is most pronounced when
pulse was attempted. The approach yielded satisfactory resultghe solute is dissolved in protic solvents which may give rise
for the dynamic Stokes shift and the temporal behavior of the to the formation of hydrogen bridgé%.4” In this paper we
integrated emission intensity. However, the predicted time- focus on the solvation dynamics of the probe molecule DCM
dependence of the emission band shape parameters (bandwidttlissolved in ethylene glycol. From the combination of the large
and height) showed a significant disparity with the experimental dipole moment of DCM in its excited state-26 D), i.e., much

results’ larger than the dipole moment of the coumarin solvation
Emission band narrowing has been observed in previous probesi*#®and the tendency of ethylene glycol toward hydrogen
solvation dynamics studies reported elsewHéfd3 Several bonding, a marked nonlinear response may be expected for the

processes have been considered to account for the narrowingystem.
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Simulations of Solvation Dynamics

In the following section, we first briefly review the applied
simulation method. Subsequently, a few typical results of the

simulations for charge separation and recombination reactions

are presented. Finally, the significance of the simulations for
the specific case of DCM in ethylene glycol is discussed.

2. Method

We consider the free energy of the system in the ground state

and in the excited staté;9(x) and F&(X), respectively, as a
function of a generalized solvation coordinateas followg>33

@)
)

wherex has the dimension of energg,andb are coefficients
in the anharmonic and harmonic terms, respectively, aitd

F9(x) = ax* + bx

FF)=aX' + b — x+e

the electronic energy difference between both states. The free

energy gap is defined &(x®) — F9(xe9 = AFS + ¢, where

AFs is the solvation free energy. Furthermore, the anharmo-

nicity parameter is defined as

B =k — k) ®)
where
ky = 9F0/0X°_y = 2b (4)
and
ke = 0P/, = 128(%,")* + 2b (5)

where xo? and x® are the values ok corresponding to the
minima inF9(x) andF#(x), respectively, andy? equals zero. In
terms of the solvation energyAFS) and the anharmonicity
parameterf), one obtains

a= —27(28 + 1)[256(33 + 1)(AF)? (6)

b= —98(28 + 1)/[8(36 + 1)*°AF 7)

It follows that AF® andg fully determine the functional behavior
of the free energy curveB9(x) and F&x). In section 3, the
influence of anharmonicity on the solvation dynamics is
examined numerically by considering the solvation dynamics
for various combinations of the parameter values/A&# and

B. To be able to compare the various results, the simulation

of the system remains fixed. The Stokes shift is giverxsy
(see Figure 1). Furthermore, from egs3 it follows thatx®

= (b/6aB)V2. Thus, for a particular choice &fFs andp, one
can calculatea andb (cf. eqs 6 and 7) and alsg®. In the
simulations of section 3¢ was held fixed at 3000 crd, which
represents a typical value of the Stokes shift of a polar dye
molecule in liquid polar solution. In Figure 1, we present a
few characteristic free energy curves f6t(x) and F&(x) for 3

= 4o, —2.00, and 0.10.

Upon impulsive photoexcitation of the solute molecules, the
probability distribution of the solvation coordinate for the system
in the ground state in thermal equilibriupy(x,0), is transferred
nonadiabatically to the excited state (vertical excitation in Figure
1 from F9(x)), resulting in a nonthermal equilibrium probability
distribution, pe(x,0), for the system in the excited state.

The evolution of pe(x,t) with time t, as caused by the

reorientational motions of the solvent molecules, was computed
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Figure 1. Free energy curves for the ground (neutral) and the excited
(charge transfer) states f@r= +o (drawn curves) = —2.00 (dotted
curves), angs = 0.10 (dashed curves). In all cases the Stokes shift
equals 3000 crt . The energy gap between the neutral and the CT
state was taken to be 19 200 chwhich is the value used in the
simulations of the experimental data of DCM in ethylene glycol (see
text).

starting from the generalized Smoluchowski equation (GSE):
The GSE, which determines the diffusiongfx.t), has the form

dpext) _
at

d €,
ngZ—X(X)]pe(x,t) ®

a| o
De(t)&’& +

whereDc(t) is the time-dependent solvation polarization diffu-
sion coefficient given by

S,(t)

= —[1ox)?
De(t) Eﬂ X) %

where kg is the Boltzmann constant andl is the absolute
temperature. As seen from eq 9, the time dependence of the
solvation polarization diffusion coefficienDe(t), is related to
that of the normalized solvation coordinate time correlation
function, S,(t). It is noted that eq 8, with a time-dependent
diffusion coefficientD¢(t), has been derived rigorously in the
limit of a harmonic free energy surfaée?*® On the other hand,
whenS,(t) is represented by a single exponent&(t) ~ exp-

9

s (—17), De(t) becomes independent of time,
have been performed under the constraint that the Stokes shift

D, = (1/)[(6x)°0] (10)
and eq 8 represents the well-known FokkBtanck equation
which is valid for any potentigré(x). Comparison with results
from more accurate, but computationally more involved, simula-
tions using the generalized Langevin equditof? has shown
that even for surfaces much more anharmonic than the ones
considered in this paper, the Smoluchowski equation as in eq 8
gives satisfactory and physically meaningful restits!! Like-
wise, we will henceforth apply eq 8, despite the fact that due to
the anharmonicity in the free energy functions of interest in
this paper, this equation cannot be derived rigorously.

In linear response, the time dependenc&df) equals that
for the normalized dynamic fluorescence Stokes shift),

vine(t) — v'ne(er)

(11)
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wherevf 4 (t) represents the time-dependent frequency of the TABLE 1: Values of # Used in the Simulations with the
maximum of the fluorescence baPtf® Henceforth in this ~ Related Solvation EnergiesAFs

paper, it is considered that the temporal behavioDgf) will B AFs (cmb)2 B AFs (cm1)2
not be too different from that expected according to linear 100 1504 0.2 1969
response theory, i.eDg(t) ~ (dC(t)/dt)/C(t). The rationale 5.0 —1547 ~3.0 —1406
behind this is that the anharmonic termg$-i(x) affect the width 2.0 —1607 -5.0 —1446
of pe(x,t), i.e., its diffusion with time, to a larger extent than 1.0 —1687 —10.0 —1474

the shift of the maximum afe(x,t) with time. Thus, to simulate 0.5 —1800 ® —1500
the time evolution of the shift in the case that anharmonicity is 2 All values of AFs are calculated for a fixed Stokes shift of 3000
involved, it seems reasonable to adopt the approac{i) cm
as in the harmonic case. The time dependendg(t)f in the
case of DCM dissolved in a few polar solvents, has been
experimentally determined recently from fluorescent up-conver-
siorP® and transient absorption experimehts. Thus, by
making use of the experimental data for the dynamic and static
Stokes shifts, it is possible to simulatg(x,t) as a function of
time for each pair of preselected valuesfoand AFs.

As a last step, the time-dependent fluorescence spectrum is
calculated using

3,000

2,000

1,000

solvation coordinate (cm™)

i) O [k g v—r0) pelxt)®  (12)

wherev is the emission frequencg(vo(x), v — 1o(X)) is a line (b)
shape function characteristic of the Franckondon factor, and . -10.0 O

vo(X) is the solvation coordinate dependent energy gap between TE -3.0
the excited state and the molecular ground state. We note that 5.2,000 R }/’_T—
the distributionpe(X,t) in fact gives rise to inhomogeneous line = =

broadening of the optical transition. Equation 12 shows that o

the simulated spectrum is obtained as the convolution of the E .
homogeneously broadened component represented by the spec- 1.000 10029 02
tral function, g(v(x)), with an inhomogeneous broadening ’ 1 2 3 4 5 6 7
contribution given bype(X,¥). Time (ps)

3. Results and Discussion Figure 2. Time evolution of (a) the coordinate position of the

. . . population distribution maximumxmax, and (b) the fwhm of the
We have performed simulations pf(xt) following the steps  qpyjation distribution for a charge separation process with a fixed
outlined above for a charge separation process and a chargestokes shift of 3000 cnt and theg values as indicated. The decay
recombination process. Figure 1 shows, as an illustrative time of the solvent response function (see text) was taken to be 1 ps.
example, the situation for a solute which can be photoexcited
into a charge transfer (CT) state. Thus, in this example, charge3000 cnt?, T = 295 K, and the time dependence of the diffusion
separation is accomplished by the photoexcitation process andcoefficient was determined from eq 9, assuming a single-
charge recombination is effectuated by emission. In addition, exponential decay fo&,(t) ~ C(t) = exp(-t/t), with a time
we report on results that simulate the temporal spectral behaviorconstant ofr = 1 ps. Since, upon photoexcitationtat O, it
of DCM dissolved in ethylene glycol. is assumed that the initial population of the ground state is
Figure 1 represents a few free energy curves for several valuesmpulsively transferred to the CT free energy surface, we have
of B used in the simulations. Curves for positive and negative pe(x,0) 0 exp(—F9(x)/ksgT). As outlined above, the simulations
values off are included. Fopf > 0, the curvature of the curve  were performed for different values gf Table 1 collects the
of the CT state at its equilibrium minimum is larger than that solvation energies for the different values fowhich were used
of the free energy of the system in the ground-state minimum, in the simulations. With these parameters, the time evolution
while for < —1 the opposite holds. Fgf — 4o, the of the population distribution as a function »for the system
curvatures at the two minima are identical. Furthermore, in in the excited state was computed for<0t < 7 ps.
the latter cases the ground-state and CT state curves are Results of the simulations for the charge separation reaction
parabolic and solvation behavior is linear. Maximum deviation for a few values fo3 are presented in Figure 2. In Figure 2a
from linear behavior is expected whgrapproaches the values we show howxmax, Which is the value ok corresponding to
—1 (from below) or 0 (from above). Note also thaicannot the maximum in the functiope(X), shifts with timet as the
adopt values betweenl and 0. Intuitively we expegt > 0 solvation progresses. As expected for a diffusion type solvation
because, in the presence of a large solute dipole moment, theelaxation process, in addition to a shift na, Wwhich
fluctuations of the solvent will be reduced and, therefore, the corresponds to the dynamic Stokes shift, the population distribu-

force constant of the curve near its minimum to be laf§ét. tion may spread out (or shrink) depending gn This is
Several molecular dynamics calculations have indicated&hat illustrated in Figure 2b which shows how the full width at half-
< 0 is also possiblé®*5-47 most simulations tend to fave > maximum (fwhm) of the functiope(X) changes with time when
0 for the CT state, howev@t, 28:45-47 considered for different values @t

The time dependence pf(x,t) was solved from eq 8 for the As follows from Figure 2a, for the chosen set of parameter

case of a charge separation process (absorption in Figure 1) fovalues, solvation relaxation is complete (i.e., the solvation
the following parameter values. The Stokes shift was fixed at coordinate change has become 3000 Ynafter about 7 ps,
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irrespective of the value g§. However, the magnitude ¢f the variation in the initial solvation rates as a functf®is not
does affect the rate of the solvation process somewhat.,3For so much determined by the slope or curvatur&%k) at small
= —3.0, the solvation is initially fastest, whereas the slowest values forx, but rather by the width of the initial distribution
initial solvation is obtained for relatively small positive values of pg(x,0). This dependence on the initial width, which depends
of 5. Forp = +ow, i.e., the free energy curves of the ground strongly onaF9(x)/0x, is, of course, contained in eqs 14 and
and excited states are parabolic, the solvation rate is betweenl5, but in a somewhat hidden fashion. In the final stage of the
that for the anharmonic cases wjitbeing either positived = solvation process, for nearx,, the influence of the other factors
0.2) or negative = —3.0). mentioned above, i.e., the slope and curvature, becomes more
To qualitatively discuss this variation of the solvation pronounced, and thus the solvation becomes fastest when
dynamics with3, we start by considering the time dependence relaxation is considered for the®(x) curve with the steepest
of first momentX[]which is obtained directly from eq 8 and is  slope (when3 = 0.2). Note that also in this case the fastest

given by solvation 3 = 0.2) corresponds to the probability distribution
. with the smallest width.
a X(t) = — & 3': X)D (13) The time evolution of the fwhm gé«(x,t) is shown in Figure
ot ks T— 0x 2b for various values gf. For = —3.0, the distributiorpe-

(x,t) is seen to broaden. This is easily understood sinces for
Although in this paper, following most experimental studies that = —3.0, one has thaty > ke and the probability distribution
address the shift of the maximum of the fluorescence band, wefor pe(x,0), as determined by the Boltzmann factor exp¢-
emphasize the change in the position of the maximum of the (x)/ksT), will be narrow as compared j&(x,%), the latter being
probability distribution with time, the behavior of the mean of representative of the probability distribution farwhen the
the population distribution, as expressed by eq 13, is expectedsystem has equilibrated in the excited state by solvation. Thus,

to be similar and somewhat easier to calculate. SHiEEX as solvation proceedg(x,t) will spread out and emission band
= dFYox — 1, eq 13 can be rewritten as broadening will occur. Wheg = 0.2, one has thaty < ke

g and, in this casege(x,0) will be broader than eventually for the
QDKDD: _ & ?F (X) _ 1D: system in the equilibrated excited state; i.e., a narrowing of the
ot ks T— ox emission bandwidth is expected, as indeed simulated in Figure

g 2b for a series of positive values ffr
De —+o0 3F (X) . . H
Tt ffm p(X.t) X dx — 1] (14) As is clear from Figure 2b, fof = 4, i.e., when the free

energy curve$-é(x) and F9(x) are parabolic, the fwhm Qfe-
(x,9) remains constant during the solvation process. Obviously,
changes in the fwhm arise from nonlinear effects in the solvation
dynamics. In this respect, our simulations seem to support the
conjecture by Carter and Hyr#8g! that any evolution in the

o (aFg(x)) fwhm of pg(x,t) represents a typical manifestation of nonlinear
f_ o, PO\ —7—| dx = 4aM; + 2bM, (15) effects in solvation dynamics. It is interesting to note from a

X comparison of parts a and b of Figure 2 that the time scale of

Equation 15 illustrates that the dependence of the solvation "€ change in the fwhm is the same as for the dynamic Stokes
rate onf as well as on time is not immediately transparent, shift. Furthermore, the onset of the dynamic change in the fwhm

since it depends on the moments of the probability distribution Of Pe(X.t) Séems somewnhat retarded as compared to that of the
function up to third order. At time = 0, it is easily verified ~ dynamic Stokes shift. Only after the maximum has moved away
that the solvation raté)Xdt equals+Dg/ksT for all values of from x = xo9 (=0), does the distribution begin to narrow

8, but immediately thereafter the solvation rates start to differ, (oroaden). Initially, the contribution of the diffusive’/ox?)
as seen in Figure 2a. term in eq 8, which is responsible for the narrowing (broaden-

To gain more insight, we turn to eq 8. The first term on the ing), is not large enough. This is readily understood siagfes(

right-hand side of eq 8 gives rise to a spreading out (shrinking) 9X?) = 12ax* + 2b(cf. eq 2), and thus, for small values xf
of the probability distribution function only, but not to a shift the influence of the anharmonicity term (which is responsible

of Xmax The second term, however, is relevant because it not for the dynamic narrowing (broadening)) is still negligible.

The integral in eq 14 can be written as a function of the potential
energy surfac&9(x) and the momentM;(t) of the probability
distribution p(x,1):

only depends orF¢dx (which, as already noted, in the limit In Figure 3, similar simulation results are shown for the case
of small values fox is not very different for the various values of a charge recombination reaction (emission in Figure 1), using
of B of Figure 1), but it contains also the factdipg(x,t)/ox). the same parameter values as before. Note that now the
For the initial distributionpe(x,0), one has thatpe(x,1)/dx) is dynamics occurs on the ground-state surface. Figure 3a shows
positive whenx < 0 and negative wher > 0. SincedF®ox the dynamic shift of the maximum of the ground-state population
<0 for x & 0, one has also thadit®/0x)(dpe(X,1)/x) is negative distribution, and Figure 3b is representative of the time-
whenx < 0 and positive wherx > 0. Thus,pe(x,0) will, as dependent change in the fwhm pf(x,f). Again, the initial

time progresses, decrease at the side where it rises (i.e., whempopulation distribution ojpy(x,t) and the anharmonicity terms

x < 0), whereape(x,0) will increase forx > 0. In this way the are pertinent to the solvation dynamics, albeit, as expected, the
shift of Xmax With time is visualized. Obviously, whedpe- results obtained for the charge recombination reaction are
(x,9/0x| becomes smaller, the ratége(x,t)/ot, becomes less as  opposite to those of the charge separation process. We now
well. This is of relevance in considering the variation of the find that for 3 = 0.2 the solvation is initially faster than fgr
Stokes shift dynamics witl$: whenf > 0, the distribution = —3.0. Taking into account the almost equal slopes of the
pe(%,0) is relatively broad as compared to the caseffor 0, ground-state free energy surfaces for the various valugs of
and thugdpe(x,1)/0x| becomes relatively small. This is basically whenx ~ X,® ~ 3000 cnt?, this observation can be explained
why theinitial solvation rate fop3 > 0 is less than in the case  using the same reasoning as above. WHen 0.2, one has
whenp < 0 (cf. Figure 2a). The conclusion is, therefore, that that the population distribution &t= 0, given by the Boltzmann
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distribution and (b) the fwhm of the population distribution for a charge bandwidth (fwhm). Upon comparison of the simulated dynamic
recombination process with a fixed Stokes shift of 3000tand the  gtokes shift with the experimental data in Figure 4a, it is clear
fs\éillig)ft)asvgsdltgakteer?'t(;”;)i(?I.egiy time of the solvent response functiona; the model calculations performed for= 0.1 indeed yield

’ satisfactory results. With regard to the fwhm (cf. Figure 4b),

factor expF&(X)/kgT), is narrower, and therefotépg(x,0)/0x| the main experimental features can be reproduced; the agreement
is larger as compared to the cases wifere —3.0 orf — +oo. between simulation and experiment is to within about 10%.
This leads one to expect that initial solvation is fastesifer In Figure 1, we have included the plot for the free energy

0.2, in agreement with the simulation results. Eventually, curves for the system in the ground and excited states as
however, the slopes of the@ = —3.0 or3 — £ free energy computed for the aforementioned parameters. It is clear that
surfaces will become steeper, and thus, for these valugs of these energy curves exhibit considerable anharmonicity char-
the solvation will be faster whex approaches zero. acteristic of nonlinear response, with a larger curvature for the
The time dependence of the emission bandwidth has also beerexcited state than for the ground stgfie 0.1). It has been
computed (cf. Figure 3b). As before, the signpofletermines argued by means of Monte Carlo calculations that a ratio of
whether a band broadening or narrowing will occur. If, for kdky =~ 11 (i.e.,f = 0.1) may indeed be expected in the event

instance > 0, then the initial probability distribution ofg- of dielectric saturation of the first solvent shell around the
(x,0) will be narrower than the final distribution functiqs- charged soluté®3! On the other hand, recently it has been
(x,%), and this obviously results in a dynamic band broadening discusse#f 2837384547 that § values in the range between 0.5
effect. Since the curvatures of ti€(x) curves wherx ~ x¢° and 2.0 seem more reasonable.

now show a significant variation witR (see, e.g., Figure 1), As is seen from Figure 4b, the simulated widt#8000 cnt?)

there is no retarded broadening effect in the charge recombina-of the initial DCM fluorescence band is slightly smaller than
tion reaction, in contrast with the charge separation reaction. the value determined from the experimental data500 cn1?).
Using the aforementioned approach, we have also attemptedThe deviation may not be significant considering the experi-
to simulate the experimentally determined spectral characteristicsmental error (10%) and the simplifications in the theoretical
for DCM dissolved in ethylene glycdl. The following param- approach. However, vibrational relaxation may play a role here
eter values were used to solpg(x,t) and lq(v,t) from egs 8 as well. It is conceivable that even when IVR is completed
and 12, aflf = 295 K. The solvent contribution to the Stokes within 100 fs after the excitation of the DCM molecufés1é
shift was taken to be equal to the experimental value of 3000 the latter are still vibrationally hot and not yet in thermal

cm™%, and taking8 = 0.1 one has thathFs = —2076 cnrt. equilibrium with the bath of solvent molecules. Subsequent
Furthermore, for the time-dependent diffusion coefficidng, vibrational cooling within a few picoseconds seems reali§tit?
(t), we used the best fit experimental time dependeheagexp- Since the fluorescence spectrum of vibrationally hot DCM

(—mift), with a; = 0.5,7; = 0.1 ps,a, = 0.3,7, = 1.5 ps, and molecules will be broadened with respect to the continuous-
az = 0.2, 73 = 30 ps. As before, impulsive excitation was wave (CW) emission band, as long as the vibrational cooling
assumed. The excitation energy,was taken to be 19200 takes place, this may be accompanied by a further reduction of
cmL. The line shape function, g{(X), v — vo(X)), characteristic the emission bandwidth. Additionally, it is remarked that, in
of the Franck-Condon overlap was taken to be Gaussian, with our simulations, the FranekCondon overlap function was

a width (fwhm) of 1400 cm®. The calculated emission spectra chosen to be a Gaussian shaped function with a line width that
I (v,t) for various values of were fitted with a log-normal line is independent of the generalized solvation coordinateror
shape functiot* A few typical results are presented in Figure the solvation of DCM in polar liquids, this may not be strictly
4. Figure 4a shows the experimental (full dots) and computed valid. If, as the system relaxes, the Gaussian line shape function
(crosses) time dependences of the position of the band maxi-narrows, this narrowing could possibly account for the somewhat
mum. Figure 4b shows the time dependence of the emissionlower line width at longer times than actually simulated (cf.
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Figure 4b). Finally, it has been recently proposed by Kovalenko  (4) Gustavsson, T.; Baldacchino, G.; Mialocg, J. C.; Pommeret, S.
et al8 that in DCM the excited-state charge transfer takes place Chem. Phys. Letl995 236 587. _ _

. | f ab 100 f Th h | (5) Pommeret, S.; Gustavsson, T.; Naskrecki, R.; Baldacchino, G.;
on a time scale of about S. e same authors alsoiaiocq, J. C.J. Mol. Lig 1995 64, 101.
suggested that the fluorescence from the locally excited state is  (6) Martin, M.; Plaza, P.; Meyer, Y. HChem. Phys1995 192, 367.
much broader than the charge transfer state emission. The o (7)C\;‘an (ig;gﬂilélgnég%;?Zhang, H.; Jonkman, A. M.; GlasbeekJM.

_ icai ys. Chem .
former would correspond to the steady-state emission observed” (8) Kovalenko, S. A- Emsting, N. P.: RuthmannChem. Phys. Lett
in an apolar solvent (e.g., cyclohexane), while the latter ;g9g 258 445.
resembles the ordinary fluorescence in a polar solvent (as e.g.  (9) Meyer, M.; Mialocg, J. COpt. Commun1987,64, 264.
methanol). As is apparent from Figure 4b, indeed we find Ch(lO)lgg_['Lnigr’15aglad4K7-:5 Walker, G. C.; Jarzeba, W.; Barbara, B. Phys.
; ; itati em ) .

eXpef”mﬁma”yéhqt aht Ver()j/ %arly tlmeshaﬁer the ?XCItat'Dﬂ ( . (11) Tominaga, K.; Walker, G. C.; Kang, T. J.; Barbara, P. F.; Fonseca,
500 fs) t e.bar} qult as deduced in't € spectral reconstructiony j "phys Chem 1991, 95, 10485.
procedure is significantly larger than simulated. Furthermore, (12) Maroncelli, M.; Fleming, G. RJ. Chem. Phys1988 89, 5044,
Kovalenko et af report an increase in their measured gain on  (13) Su, S. G.; Simon, J. OChem. Phys. Lettl989 158 423.

; i ; (14) Horng, M. L.; Gardecki, J. A.; Papazyan, A.; Maroncelli, 3.
a time scale similar to that of the integrated fluorescence Phys. Chemi995 99, 17311,

intensity increase previously observed by3ds.Evidently, (15) Taylor, A. J.: Erskine, D. J.; Tang, C. Chem. Phys. Lett984,
additional features, not included in the simulations, have to be 103 430.

considered when the electronic character of the fluorescent statelSéllG) Mokhtari, A.; Chebira, A.; Chesnoy, J. Opt. Soc. Am. B99Q 7,
Is changing with time. . . . (1%) Laermer, F.; Israel, W.; Elsaesser,JT Opt. Soc. Am. B99Q 7,
In an attempt to further elucidate the influence of intramo- 1604,
lecular relaxation (IVR, vibrational cooling, internal conversion, (18) Elsaesser, T.; Kaiser, WAnnu. Re. Phys. Chem1991,42, 83.
etc.) on the time-resolved emission spectra, we have recently (19) Laermer, F.; Elsaesser, T.; Kaiser, @hem. Phys. Letl989 156,
performed fluorescence up-conversion experiments for DCM (20) Carter, E. A.; Hynes, J. Tl. Phys. Cheml989 93, 2184.

in which the temporal evolution of the emission spectrum was  (21) carter, E. A.: Hynes, J. T. Chem. Phys1991, 94, 5961.

measured as a function of the excitation enéfgyAfter (22) Calef, D. F.; Wolynes, P. Gl. Chem. Phys1983 78, 470.
excitation of DCM into the vibratidessphotoexcited state, the (23) King, G.; Warshel, AJ. Chem. Phys199Q 93, 8682.
solvation dynamics after 500 fs is found to be no different to ~ (24) Maroncelli, M.J. Chem. Phys1991, 94, 2084.

h | d . | d by UsTh . | (25) Papazyan, A.; Maroncelli, Ml. Chem. Phys1991,95, 9219.
that already previously reported by usThus, using laser (26) Fonseca, T.; Ladanyi, B. M.; Hynes, J. J.Phys. Chem1992,
selective excitation, it is shown that, at least after 500 fs, the 96, 4085.

dynamic changes in the emission bandwidth are not due to any (27) Georgievskii, Y.J. Chem. Phys1996,104, 5251.

i i ; ; et (28) Ichiye, T.J. Chem. Phys1996,104, 7561.
intramolecular relaxation process, in particular vibrational (29) Kakitani, T.. Mataga, NChem. Phys. Lett.986, 124, 437.

i 16—-19
cooling: ) o (30) Hatano, Y.; Saito, M.; Kakitani, T.; Mataga, N. Phys. Chem
In summary, starting from a Smoluchowski diffusion equa- 1988 92, 1008.
tion, we have simulated dynamic Stokes shift as well as band _ (31) Hatano, Y.; Kakitani, T.; Yoshimori, A.; Saito, M.; Mataga, ).

i i i ing Phys. Soc. Jpril990,59, 1104.
narrowing (or, in some cases, broadening) effects following ™75 =\ 2L id LEE VR 2oty s chemios7,91, 6277,
pulsed excitation of an optical transition. Emphasis has been  (33) yoshimori, A.: Kakitani, T.; Enomoto, Y.; MatagAl. J. Phys.

on the effects that arise when anharmonicity in the free energy Chem 1989 93, 8316.
curves as a function of the solvation coordinate is taken into  (34) Saito, M.; Kakitani, TChem. Phys. Lett1990,172, 169.

account explicitly. It has been shown that the anharmonicity Chgﬁ) Eﬁfsmfﬁhgéffgga%s“ Yoshimori, A.; Hatano, Y.; Saito, M.
causes a narrowing (broadening) of the optical transition band ™ 3y Enomoto, Y.: Kakitani, T.; Yoshimori, A.; Hatano, €hem. Phys.

on the time scale of the solvation. The simulations can accountLett 1991,186, 366.
for the observations previously reported for fluorescent DCM  (37) Hatano, Y.; Kakitani, T.; Enomoto, Y.; Yoshimori, Mol. Simul

dissolved in ethylene glycol provided a pronounced anharmo- lg?ig?’égslmmon A.; Kakitani, T.J. Phys. Soc. Jpri992 61, 2577
nicity of the free energy curves is assumed. A few additional  (39) Tachiya, M.Chem. Phys. Lettl989 159, 505. '
factors relevant for the observed bandwidth changes have also (40) Tachiya, M.J. Phys. Chem1989 93, 7050.
been discussed. (41) Tachiya, M.; Murata, SJ. Phys. Chem1992 96, 8441.

(42) Tachiya, M.J. Phys. Chem1993 97, 5911.

: . (43) Yoshimori, A.Chem. Phys. Lett1991,184, 76.
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