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Simulations of the time evolution of the probability distribution function of the solvation coordinate of a
solute in liquid solution are presented. Assuming impulsive excitation of the ground-state population to the
excited-state free energy surface, the time dependence of the probability distribution function of the solvation
coordinate is obtained by solving the Smoluchowski diffusion equation. Emphasis is on the influence of
anharmonicity in the expression for the free energy surfaces on the solvation dynamics and its implications
for time-resolved fluorescence measurements.

1. Introduction

Solvation dynamics in polar liquids has received great interest
in the past decade [for reviews, see ref 1]. The time-dependent
response of the solvent upon photoinduced changes of the charge
distribution within the solute molecules has been the main focus.
An example of a molecule for which several solvation relaxation
studies have been performed in recent years is the laser dye
molecule DCM (4-(dicyanomethylene)-2-methyl-6-(p-(dimethyl-
amino)styryl)-4H-pyran).2-8 In polar solvents, DCM is known
to exhibit an appreciable total Stokes shift (e.g.,λabs) 465 nm
andλfl ) 630 nm in methanol9). The large Stokes shift arises
mainly from the large difference (∼20 D) between the dipole
moments of the molecule in its ground and the emissive excited
charge transfer (CT) state.9 Recently, we reported on femto-
second fluorescence up-conversion studies of the solvation
dynamics for DCM.3,7 In several polar solvents, DCM showed
bimodal solvation behavior. A fast decay component (∼100
fs) was observed and attributed to the effect of inertial “free
streaming” motions of the solvent molecules. The slower decay
components, on a picosecond time scale, were considered to
be representative of the contribution of diffusional reorientation
motions to the solvation dynamics of the solute. Concomitant
with the dynamic Stokes shift, a rapid initial increase (on a
subpicosecond time scale) in the integrated emission intensity
and an overall narrowing of the emission band could be
discerned. It was conjectured that the excited-state electron
transfer is preferentially to a higher lying, but nonemissive,
charge transfer state which subsequently relaxes by internal
conversion to the emissive charge transfer state. Starting from
a modified Smoluchowski diffusion equation1,10,11and assuming
free energy curves that show a parabolic dependence on the
solvation coordinate, a model calculation of the population
redistribution in the excited CT state following the excitation
pulse was attempted. The approach yielded satisfactory results
for the dynamic Stokes shift and the temporal behavior of the
integrated emission intensity. However, the predicted time-
dependence of the emission band shape parameters (bandwidth
and height) showed a significant disparity with the experimental
results.7

Emission band narrowing has been observed in previous
solvation dynamics studies reported elsewhere.4,12,13 Several
processes have been considered to account for the narrowing

phenomenon. One of these is vibrational cooling which
equilibrates the vibrationally hot molecule (formed in the
intramolecular vibrational relaxation (IVR) process14-16 fol-
lowing the optical excitation pulse) with the bath.4,14,16-19

Vibrational cooling is likely to occur on a picosecond time
scale.16-19 Alternatively, it has been proposed that spectral
narrowing results from the dynamic solvation process it-
self.12,13,20,21 In particular, narrowing may occur when the
curvature of the free energy surface for the solute system in
the excited state (as a function of the solvation coordinate) is
larger than for the free energy surface for the system in the
ground state.20-28 A change in the curvature of the free energy
might occur when the solute in its excited state dielectrically
saturates the first solvation shell.29-31 It is the purpose of this
paper to explore solvation-induced band narrowing based on
this latter mechanism in more detail by extending our previous
simulations.7 It will be shown that better agreement with the
experimental data for DCM in polar solution can be obtained
by including anharmonic terms in the expressions for the free
energy curves as a function of the solvation coordinate. The
results are a typical manifestation of nonlinear response in
solvation dynamics. Nonlinear effects in ionic and dipolar
solvation have been extensively investigated. Kakitani, Mataga,
and Yoshimori32-38 discussed the effects of dielectric saturation
on the activation barrier and the reaction rate of the charge
transfer in liquid solution. However, in a series of papers
Tachiya has commented on several aspects of their work.39-42

In more recent work, Yoshimori elaborated on the effects of
nonlinear response on the dynamics of the solvation process
using a generalized Smoluchowski-Vlasov equation.43,44 Also,
nonlinear effects have been included in molecular dynamics
simulations of solvation dynamics.45 In general, it has been
concluded that nonlinear behavior is most pronounced when
the solute is dissolved in protic solvents which may give rise
to the formation of hydrogen bridges.45-47 In this paper we
focus on the solvation dynamics of the probe molecule DCM
dissolved in ethylene glycol. From the combination of the large
dipole moment of DCM in its excited state (∼26 D), i.e., much
larger than the dipole moment of the coumarin solvation
probes,14,45and the tendency of ethylene glycol toward hydrogen
bonding, a marked nonlinear response may be expected for the
system.
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In the following section, we first briefly review the applied
simulation method. Subsequently, a few typical results of the
simulations for charge separation and recombination reactions
are presented. Finally, the significance of the simulations for
the specific case of DCM in ethylene glycol is discussed.

2. Method

We consider the free energy of the system in the ground state
and in the excited state,Fg(x) and Fe(x), respectively, as a
function of a generalized solvation coordinate,x, as follows25-33

wherex has the dimension of energy,a andb are coefficients
in the anharmonic and harmonic terms, respectively, andε is
the electronic energy difference between both states. The free
energy gap is defined asFe(x0e) - Fg(x0g) ) ∆Fs + ε, where
∆Fs is the solvation free energy. Furthermore, the anharmo-
nicity parameter is defined as

where

and

where x0g and x0e are the values ofx corresponding to the
minima inFg(x) andFe(x), respectively, andx0g equals zero. In
terms of the solvation energy (∆Fs) and the anharmonicity
parameter (â), one obtains

It follows that∆Fs andâ fully determine the functional behavior
of the free energy curvesFg(x) and Fe(x). In section 3, the
influence of anharmonicity on the solvation dynamics is
examined numerically by considering the solvation dynamics
for various combinations of the parameter values for∆Fs and
â. To be able to compare the various results, the simulations
have been performed under the constraint that the Stokes shift
of the system remains fixed. The Stokes shift is given byxoe

(see Figure 1). Furthermore, from eqs 3-7, it follows thatx0e
) (b/6aâ)1/2. Thus, for a particular choice of∆Fs andâ, one
can calculatea and b (cf. eqs 6 and 7) and alsox0e. In the
simulations of section 3,x0ewas held fixed at 3000 cm-1, which
represents a typical value of the Stokes shift of a polar dye
molecule in liquid polar solution. In Figure 1, we present a
few characteristic free energy curves forFg(x) andFe(x) for â
) (∞, -2.00, and 0.10.
Upon impulsive photoexcitation of the solute molecules, the

probability distribution of the solvation coordinate for the system
in the ground state in thermal equilibrium,Fg(x,0), is transferred
nonadiabatically to the excited state (vertical excitation in Figure
1 fromFg(x)), resulting in a nonthermal equilibrium probability
distribution,Fe(x,0), for the system in the excited state.
The evolution of Fe(x,t) with time t, as caused by the

reorientational motions of the solvent molecules, was computed

starting from the generalized Smoluchowski equation (GSE).1,10,11

The GSE, which determines the diffusion ofFe(x,t), has the form

whereDe(t) is the time-dependent solvation polarization diffu-
sion coefficient given by

where kB is the Boltzmann constant andT is the absolute
temperature. As seen from eq 9, the time dependence of the
solvation polarization diffusion coefficient,De(t), is related to
that of the normalized solvation coordinate time correlation
function, Sν(t). It is noted that eq 8, with a time-dependent
diffusion coefficientDe(t), has been derived rigorously in the
limit of a harmonic free energy surface.48,49 On the other hand,
whenSν(t) is represented by a single exponential,Sν(t) ∼ exp-
(-tτ), De(t) becomes independent of time,

and eq 8 represents the well-known Fokker-Planck equation
which is valid for any potentialFe(x). Comparison with results
from more accurate, but computationally more involved, simula-
tions using the generalized Langevin equation50-53 has shown
that even for surfaces much more anharmonic than the ones
considered in this paper, the Smoluchowski equation as in eq 8
gives satisfactory and physically meaningful results.1,10,11 Like-
wise, we will henceforth apply eq 8, despite the fact that due to
the anharmonicity in the free energy functions of interest in
this paper, this equation cannot be derived rigorously.
In linear response, the time dependence ofSν(t) equals that

for the normalized dynamic fluorescence Stokes shift,C(t),

Fg(x) ) ax4 + bx2 (1)

Fe(x) ) ax4 + bx2 - x+ ε (2)

â ) kg/(ke - kg) (3)

kg ) ∂
2Fg(x)/∂x2|x)x0g

) 2b (4)

ke ) ∂
2Fe(x)/∂x2|x)x0e

) 12a(x0
e)2 + 2b (5)

a) -27(2â + 1)3/[256(3â + 1)4(∆Fs)3] (6)

b) -9â(2â + 1)/[8(3â + 1)2∆Fs] (7)

Figure 1. Free energy curves for the ground (neutral) and the excited
(charge transfer) states forâ ) (∞ (drawn curves),â ) -2.00 (dotted
curves), andâ ) 0.10 (dashed curves). In all cases the Stokes shift
equals 3000 cm-1 . The energy gap between the neutral and the CT
state was taken to be 19 200 cm-1, which is the value used in the
simulations of the experimental data of DCM in ethylene glycol (see
text).

∂Fe(x,t)
∂t

) De(t)
∂

∂x[ ∂∂x+ 1
kBT

dFe(x)
dx ]Fe(x,t) (8)

De(t) ) -〈(δx)2〉
Ṡν(t)

Sν(t)
(9)

De ) (1/τ)〈(δx)2〉 (10)

C(t) )
νflmax(t) - νflmax(∞)
νflmax(0)- νflmax(∞)

(11)
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whereνflmax (t) represents the time-dependent frequency of the
maximum of the fluorescence band.54,55 Henceforth in this
paper, it is considered that the temporal behavior ofDe(t) will
not be too different from that expected according to linear
response theory, i.e.,De(t) ∼ (dC(t)/dt)/C(t). The rationale
behind this is that the anharmonic terms inFe(x) affect the width
of Fe(x,t), i.e., its diffusion with time, to a larger extent than
the shift of the maximum ofFe(x,t) with time. Thus, to simulate
the time evolution of the shift in the case that anharmonicity is
involved, it seems reasonable to adopt the approach forDe(t)
as in the harmonic case. The time dependence ofC(t), in the
case of DCM dissolved in a few polar solvents, has been
experimentally determined recently from fluorescent up-conver-
sion5,6 and transient absorption experiments.3,4,9 Thus, by
making use of the experimental data for the dynamic and static
Stokes shifts, it is possible to simulateFe(x,t) as a function of
time for each pair of preselected values ofâ and∆Fs.
As a last step, the time-dependent fluorescence spectrum is

calculated using

whereν is the emission frequency,g(ν0(x), ν - ν0(x)) is a line
shape function characteristic of the Franck-Condon factor, and
ν0(x) is the solvation coordinate dependent energy gap between
the excited state and the molecular ground state. We note that
the distributionFe(x,t) in fact gives rise to inhomogeneous line
broadening of the optical transition. Equation 12 shows that
the simulated spectrum is obtained as the convolution of the
homogeneously broadened component represented by the spec-
tral function, g(ν(x)), with an inhomogeneous broadening
contribution given byFe(x,t).

3. Results and Discussion

We have performed simulations ofFe(x,t) following the steps
outlined above for a charge separation process and a charge
recombination process. Figure 1 shows, as an illustrative
example, the situation for a solute which can be photoexcited
into a charge transfer (CT) state. Thus, in this example, charge
separation is accomplished by the photoexcitation process and
charge recombination is effectuated by emission. In addition,
we report on results that simulate the temporal spectral behavior
of DCM dissolved in ethylene glycol.
Figure 1 represents a few free energy curves for several values

of â used in the simulations. Curves for positive and negative
values ofâ are included. Forâ > 0, the curvature of the curve
of the CT state at its equilibrium minimum is larger than that
of the free energy of the system in the ground-state minimum,
while for â < -1 the opposite holds. Forâ f (∞, the
curvatures at the two minima are identical. Furthermore, in
the latter cases the ground-state and CT state curves are
parabolic and solvation behavior is linear. Maximum deviation
from linear behavior is expected whenâ approaches the values
-1 (from below) or 0 (from above). Note also thatâ cannot
adopt values between-1 and 0. Intuitively we expectâ > 0
because, in the presence of a large solute dipole moment, the
fluctuations of the solvent will be reduced and, therefore, the
force constant of the curve near its minimum to be larger.20,21

Several molecular dynamics calculations have indicated thatâ
< 0 is also possible;26,45-47 most simulations tend to favorâ >
0 for the CT state, however.21-28,45-47

The time dependence ofFe(x,t) was solved from eq 8 for the
case of a charge separation process (absorption in Figure 1) for
the following parameter values. The Stokes shift was fixed at

3000 cm-1, T) 295 K, and the time dependence of the diffusion
coefficient was determined from eq 9, assuming a single-
exponential decay forSν(t) ∼ C(t) ) exp(-t/τ), with a time
constant ofτ ) 1 ps. Since, upon photoexcitation att ) 0, it
is assumed that the initial population of the ground state is
impulsively transferred to the CT free energy surface, we have
Fe(x,0)∝ exp(-Fg(x)/kBT). As outlined above, the simulations
were performed for different values ofâ. Table 1 collects the
solvation energies for the different values forâ which were used
in the simulations. With these parameters, the time evolution
of the population distribution as a function ofx for the system
in the excited state was computed for 0< t < 7 ps.
Results of the simulations for the charge separation reaction

for a few values forâ are presented in Figure 2. In Figure 2a
we show howxmax, which is the value ofx corresponding to
the maximum in the functionFe(x), shifts with time t as the
solvation progresses. As expected for a diffusion type solvation
relaxation process, in addition to a shift inxmax, which
corresponds to the dynamic Stokes shift, the population distribu-
tion may spread out (or shrink) depending onâ. This is
illustrated in Figure 2b which shows how the full width at half-
maximum (fwhm) of the functionFe(x) changes with time when
considered for different values ofâ.
As follows from Figure 2a, for the chosen set of parameter

values, solvation relaxation is complete (i.e., the solvation
coordinate change has become 3000 cm-1) after about 7 ps,

Ifl(ν,t) ∝∫dx g(ν0(x),ν-ν0(x)) Fe(x,t)ν
3 (12)

TABLE 1: Values of â Used in the Simulations with the
Related Solvation Energies∆Fs

â ∆Fs (cm-1)a â ∆Fs (cm-1)a

10.0 -1524 0.2 -1969
5.0 -1547 -3.0 -1406
2.0 -1607 -5.0 -1446
1.0 -1687 -10.0 -1474
0.5 -1800 ∞ -1500

a All values of∆Fs are calculated for a fixed Stokes shift of 3000
cm-1.

Figure 2. Time evolution of (a) the coordinate position of the
population distribution maximum,xmax, and (b) the fwhm of the
population distribution for a charge separation process with a fixed
Stokes shift of 3000 cm-1 and theâ values as indicated. The decay
time of the solvent response function (see text) was taken to be 1 ps.
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irrespective of the value ofâ. However, the magnitude ofâ
does affect the rate of the solvation process somewhat. Forâ
) -3.0, the solvation is initially fastest, whereas the slowest
initial solvation is obtained for relatively small positive values
of â. For â ) (∞, i.e., the free energy curves of the ground
and excited states are parabolic, the solvation rate is between
that for the anharmonic cases withâ being either positive (â )
0.2) or negative (â ) -3.0).
To qualitatively discuss this variation of the solvation

dynamics withâ, we start by considering the time dependence
of first moment〈x〉, which is obtained directly from eq 8 and is
given by

Although in this paper, following most experimental studies that
address the shift of the maximum of the fluorescence band, we
emphasize the change in the position of the maximum of the
probability distribution with time, the behavior of the mean of
the population distribution, as expressed by eq 13, is expected
to be similar and somewhat easier to calculate. Since∂Fe/∂x
) ∂Fg/∂x - 1, eq 13 can be rewritten as

The integral in eq 14 can be written as a function of the potential
energy surfaceFg(x) and the momentsMi(t) of the probability
distributionF(x,t):

Equation 15 illustrates that the dependence of the solvation
rate onâ as well as on time is not immediately transparent,
since it depends on the moments of the probability distribution
function up to third order. At timet ) 0, it is easily verified
that the solvation rate,∂〈x〉/∂t equals+De/kBT for all values of
â, but immediately thereafter the solvation rates start to differ,
as seen in Figure 2a.
To gain more insight, we turn to eq 8. The first term on the

right-hand side of eq 8 gives rise to a spreading out (shrinking)
of the probability distribution function only, but not to a shift
of xmax. The second term, however, is relevant because it not
only depends on∂Fe/∂x (which, as already noted, in the limit
of small values forx is not very different for the various values
of â of Figure 1), but it contains also the factor (∂Fe(x,t)/∂x).
For the initial distribution,Fe(x,0), one has that (∂Fe(x,t)/∂x) is
positive whenx < 0 and negative whenx > 0. Since∂Fe/∂x
<0 for x≈ 0, one has also that (∂Fe/∂x)(∂Fe(x,t)/∂x) is negative
whenx < 0 and positive whenx > 0. Thus,Fe(x,0) will, as
time progresses, decrease at the side where it rises (i.e., when
x< 0), whereasFe(x,0) will increase forx> 0. In this way the
shift of xmax with time is visualized. Obviously, when|∂Fe-
(x,t)/∂x| becomes smaller, the rate,∂Fe(x,t)/∂t, becomes less as
well. This is of relevance in considering the variation of the
Stokes shift dynamics withâ: when â > 0, the distribution
Fe(x,0) is relatively broad as compared to the case forâ < 0,
and thus|∂Fe(x,t)/∂x| becomes relatively small. This is basically
why the initial solvation rate forâ > 0 is less than in the case
whenâ < 0 (cf. Figure 2a). The conclusion is, therefore, that

the variation in the initial solvation rates as a functionâ is not
so much determined by the slope or curvature ofFe(x) at small
values forx, but rather by the width of the initial distribution
of Fe(x,0). This dependence on the initial width, which depends
strongly on∂Fg(x)/∂x, is, of course, contained in eqs 14 and
15, but in a somewhat hidden fashion. In the final stage of the
solvation process, forx nearxe, the influence of the other factors
mentioned above, i.e., the slope and curvature, becomes more
pronounced, and thus the solvation becomes fastest when
relaxation is considered for theFe(x) curve with the steepest
slope (whenâ ) 0.2). Note that also in this case the fastest
solvation (â ) 0.2) corresponds to the probability distribution
with the smallest width.
The time evolution of the fwhm ofFe(x,t) is shown in Figure

2b for various values ofâ. Forâ ) -3.0, the distributionFe-
(x,t) is seen to broaden. This is easily understood since, forâ
) -3.0, one has thatkg > ke and the probability distribution
for Fe(x,0), as determined by the Boltzmann factor exp(-Fg-
(x)/kBT), will be narrow as compared toFe(x,∞), the latter being
representative of the probability distribution forx when the
system has equilibrated in the excited state by solvation. Thus,
as solvation proceeds,Fe(x,t) will spread out and emission band
broadening will occur. Whenâ ) 0.2, one has thatkg < ke
and, in this case,Fe(x,0) will be broader than eventually for the
system in the equilibrated excited state; i.e., a narrowing of the
emission bandwidth is expected, as indeed simulated in Figure
2b for a series of positive values forâ.
As is clear from Figure 2b, forâ ) (∞, i.e., when the free

energy curvesFe(x) andFg(x) are parabolic, the fwhm ofFe-
(x,t) remains constant during the solvation process. Obviously,
changes in the fwhm arise from nonlinear effects in the solvation
dynamics. In this respect, our simulations seem to support the
conjecture by Carter and Hynes20,21 that any evolution in the
fwhm of Fe(x,t) represents a typical manifestation of nonlinear
effects in solvation dynamics. It is interesting to note from a
comparison of parts a and b of Figure 2 that the time scale of
the change in the fwhm is the same as for the dynamic Stokes
shift. Furthermore, the onset of the dynamic change in the fwhm
of Fe(x,t) seems somewhat retarded as compared to that of the
dynamic Stokes shift. Only after the maximum has moved away
from x ) x0g ()0), does the distribution begin to narrow
(broaden). Initially, the contribution of the diffusive (∂2Fe/∂x2)
term in eq 8, which is responsible for the narrowing (broaden-
ing), is not large enough. This is readily understood since (∂2Fe/
∂x2) ) 12ax2 + 2b(cf. eq 2), and thus, for small values ofx,
the influence of the anharmonicity term (which is responsible
for the dynamic narrowing (broadening)) is still negligible.
In Figure 3, similar simulation results are shown for the case

of a charge recombination reaction (emission in Figure 1), using
the same parameter values as before. Note that now the
dynamics occurs on the ground-state surface. Figure 3a shows
the dynamic shift of the maximum of the ground-state population
distribution, and Figure 3b is representative of the time-
dependent change in the fwhm ofFg(x,t). Again, the initial
population distribution ofFg(x,t) and the anharmonicity terms
are pertinent to the solvation dynamics, albeit, as expected, the
results obtained for the charge recombination reaction are
opposite to those of the charge separation process. We now
find that forâ ) 0.2 the solvation is initially faster than forâ
) -3.0. Taking into account the almost equal slopes of the
ground-state free energy surfaces for the various values ofâ
whenx ≈ x0e≈ 3000 cm-1, this observation can be explained
using the same reasoning as above. Whenâ ) 0.2, one has
that the population distribution att ) 0, given by the Boltzmann

∂

∂t
〈x(t)〉 ) -

De

kBT
〈∂Fe(x)
∂x 〉 (13)

∂

∂t
〈x(t)〉 ) -

De

kBT
〈∂Fg(x)
∂x

- 1〉 )

-
De

kBT
(∫-∞

+∞
F(x,t)

∂Fg(x)
∂x

dx- 1) (14)

∫-∞

+∞
F(x,t)(∂Fg(x)

∂x ) dx) 4aM3 + 2bM1 (15)
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factor exp(-Fe(x)/kBT), is narrower, and therefore|∂Fg(x,0)/∂x|
is larger as compared to the cases whereâ ) -3.0 orâ f (∞.
This leads one to expect that initial solvation is fastest forâ )
0.2, in agreement with the simulation results. Eventually,
however, the slopes of theâ ) -3.0 orâ f (∞ free energy
surfaces will become steeper, and thus, for these values ofâ,
the solvation will be faster whenx approaches zero.
The time dependence of the emission bandwidth has also been

computed (cf. Figure 3b). As before, the sign ofâ determines
whether a band broadening or narrowing will occur. If, for
instance,â > 0, then the initial probability distribution ofFg-
(x,0) will be narrower than the final distribution functionFg-
(x,∞), and this obviously results in a dynamic band broadening
effect. Since the curvatures of theFg(x) curves whenx ≈ x0e

now show a significant variation withx (see, e.g., Figure 1),
there is no retarded broadening effect in the charge recombina-
tion reaction, in contrast with the charge separation reaction.
Using the aforementioned approach, we have also attempted

to simulate the experimentally determined spectral characteristics
for DCM dissolved in ethylene glycol.7 The following param-
eter values were used to solveFe(x,t) and Ifl (ν,t) from eqs 8
and 12, atT ) 295 K. The solvent contribution to the Stokes
shift was taken to be equal to the experimental value of 3000
cm-1, and takingâ ) 0.1 one has that∆Fs ) -2076 cm-1.
Furthermore, for the time-dependent diffusion coefficient,De-
(t), we used the best fit experimental time dependence,∑ai exp-
(-τi/t), with a1 ) 0.5, τ1 ) 0.1 ps,a2 ) 0.3, τ2 ) 1.5 ps, and
a3 ) 0.2, τ3 ) 30 ps. As before, impulsive excitation was
assumed. The excitation energy,ε, was taken to be 19 200
cm-1. The line shape function, g(ν0(x), ν - ν0(x)), characteristic
of the Franck-Condon overlap was taken to be Gaussian, with
a width (fwhm) of 1400 cm-1. The calculated emission spectra
Ifl (ν,t) for various values oft were fitted with a log-normal line
shape function.14 A few typical results are presented in Figure
4. Figure 4a shows the experimental (full dots) and computed
(crosses) time dependences of the position of the band maxi-
mum. Figure 4b shows the time dependence of the emission

bandwidth (fwhm). Upon comparison of the simulated dynamic
Stokes shift with the experimental data in Figure 4a, it is clear
that the model calculations performed forâ ) 0.1 indeed yield
satisfactory results. With regard to the fwhm (cf. Figure 4b),
the main experimental features can be reproduced; the agreement
between simulation and experiment is to within about 10%.
In Figure 1, we have included the plot for the free energy

curves for the system in the ground and excited states as
computed for the aforementioned parameters. It is clear that
these energy curves exhibit considerable anharmonicity char-
acteristic of nonlinear response, with a larger curvature for the
excited state than for the ground state (â ) 0.1). It has been
argued by means of Monte Carlo calculations that a ratio of
ke/kg ≈ 11 (i.e.,â ) 0.1) may indeed be expected in the event
of dielectric saturation of the first solvent shell around the
charged solute.29-31 On the other hand, recently it has been
discussed21-28,37,38,45-47 thatâ values in the range between 0.5
and 2.0 seem more reasonable.
As is seen from Figure 4b, the simulated width (∼3000 cm-1)

of the initial DCM fluorescence band is slightly smaller than
the value determined from the experimental data (∼3500 cm-1).
The deviation may not be significant considering the experi-
mental error (10%) and the simplifications in the theoretical
approach. However, vibrational relaxation may play a role here
as well. It is conceivable that even when IVR is completed
within 100 fs after the excitation of the DCM molecules,14-16

the latter are still vibrationally hot and not yet in thermal
equilibrium with the bath of solvent molecules. Subsequent
vibrational cooling within a few picoseconds seems realistic.16-19

Since the fluorescence spectrum of vibrationally hot DCM
molecules will be broadened with respect to the continuous-
wave (CW) emission band, as long as the vibrational cooling
takes place, this may be accompanied by a further reduction of
the emission bandwidth. Additionally, it is remarked that, in
our simulations, the Franck-Condon overlap function was
chosen to be a Gaussian shaped function with a line width that
is independent of the generalized solvation coordinate,x. For
the solvation of DCM in polar liquids, this may not be strictly
valid. If, as the system relaxes, the Gaussian line shape function
narrows, this narrowing could possibly account for the somewhat
lower line width at longer times than actually simulated (cf.

Figure 3. Time evolution of (a) the maximum of the population
distribution and (b) the fwhm of the population distribution for a charge
recombination process with a fixed Stokes shift of 3000 cm-1 and the
â values as indicated. The decay time of the solvent response function
(see text) was taken to be 1 ps.

Figure 4. Experimental and simulated (a) dynamic Stokes shifts and
(b) emission bandwidth (fwhm) for DCM dissolved in ethylene
glycol: b, experimental;×, simulated.
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Figure 4b). Finally, it has been recently proposed by Kovalenko
et al.8 that in DCM the excited-state charge transfer takes place
on a time scale of about 100 fs. The same authors also
suggested that the fluorescence from the locally excited state is
much broader than the charge transfer state emission. The
former would correspond to the steady-state emission observed
in an apolar solvent (e.g., cyclohexane), while the latter
resembles the ordinary fluorescence in a polar solvent (as e.g.
methanol). As is apparent from Figure 4b, indeed we find
experimentally that at very early times after the excitation (t <
500 fs) the bandwidth as deduced in the spectral reconstruction
procedure is significantly larger than simulated. Furthermore,
Kovalenko et al.8 report an increase in their measured gain on
a time scale similar to that of the integrated fluorescence
intensity increase previously observed by us.3,7 Evidently,
additional features, not included in the simulations, have to be
considered when the electronic character of the fluorescent state
is changing with time.
In an attempt to further elucidate the influence of intramo-

lecular relaxation (IVR, vibrational cooling, internal conversion,
etc.) on the time-resolved emission spectra, we have recently
performed fluorescence up-conversion experiments for DCM
in which the temporal evolution of the emission spectrum was
measured as a function of the excitation energy.56 After
excitation of DCM into the vibrationlessphotoexcited state, the
solvation dynamics after 500 fs is found to be no different to
that already previously reported by us.7 Thus, using laser
selective excitation, it is shown that, at least after 500 fs, the
dynamic changes in the emission bandwidth are not due to any
intramolecular relaxation process, in particular vibrational
cooling.16-19

In summary, starting from a Smoluchowski diffusion equa-
tion, we have simulated dynamic Stokes shift as well as band
narrowing (or, in some cases, broadening) effects following
pulsed excitation of an optical transition. Emphasis has been
on the effects that arise when anharmonicity in the free energy
curves as a function of the solvation coordinate is taken into
account explicitly. It has been shown that the anharmonicity
causes a narrowing (broadening) of the optical transition band
on the time scale of the solvation. The simulations can account
for the observations previously reported for fluorescent DCM
dissolved in ethylene glycol provided a pronounced anharmo-
nicity of the free energy curves is assumed. A few additional
factors relevant for the observed bandwidth changes have also
been discussed.
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